If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+14x+2=0
a = 3; b = 14; c = +2;
Δ = b2-4ac
Δ = 142-4·3·2
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{43}}{2*3}=\frac{-14-2\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{43}}{2*3}=\frac{-14+2\sqrt{43}}{6} $
| 5x3=53 | | 3i=5 | | a-a/2=94 | | X-x/2=94 | | 1.2y+.52=7 | | 42=p+-383 | | n-21=311 | | d-631=70 | | -446=q+507 | | x(9)=108 | | 15r=-570 | | 19=v/30 | | f+386=5459 | | w-35=90 | | u-590=145 | | -q+-4=-14 | | w-510=399 | | 13w=910 | | 4=14-j | | f+-944=-436 | | 3w+-9=6 | | 984=4z | | p-28=22 | | 3=-9+2q | | g-604=731 | | -45=-9k-9 | | -21=d/31 | | 15+2p=1 | | u/12=23 | | h+35=969 | | y/31=-10 | | p-17=3 |